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1. Why do we need observation distances?  

 
 

• Counting animals is difficult for most species, because we cannot identify individuals 

• Observations at random locations → representative sample  

• Camera trapping has become an increasingly popular approach  

The lynx is rather an  exception… 



1. Why do we need observation distances?  

 
 

• The probability to observe an animal decreases with its distance from a camera trap 

• The form of this decrease depends on  the properties of the animals, the vegetation and 
terrain, as well as the weather 

 

 

Example: Red deer observations  in the Bavarian 
Forest National Park in different distances from the 

camera trap (in metres) 

Camera 
trap 



1. Why do we need observation distances? 

t= Time difference between snapshot moments 
 
K= Number of camera trap locations 
 
nk= Number of observed animals at camera trap 
location k 
 

Ɵ= Angle of view  
 
ω= Truncation distance 
 
Tk= Deployment time 
 
𝑃 𝑘 

= Estimated probability of obtaining an image of 
an animal within Ɵ and ω at a snapshot moment 

 

𝐴 
 
= Activity level 

 

2s 

𝐷 =
2𝑡  𝑛𝑘

𝐾
𝑘=1

Ɵ ω2 
 𝑇𝑘 𝑃 𝑘

𝐾
𝑘=1

1

𝐴 
 

Camera 
trap 

Truncation 
distance 

θ 

Detection area 



Collection 

Deployment 1 

Deployment 2 

Deployment 3 

DSGVO 

2. How to obtain observation distances? 

ZIP 



2. How to obtain observation distances? 

 
 

• Manual estimation of observation distances based on distance markers in 1,2,…, 15 m 
distance 
 



3. Semi-automatic distance estimation 

 
 

• Animal detection via MegaDetector (Beery et al. 2019) 

• Relative depth estimation by a deep learning algorithm (DPT, Ranftl et al. 2021) 

• Transformation to absolute distance estimates based on at least two reference images 
with an object in a known distance  

 5 m 

10 m 

• The 20th percentile inside the bounding box 
around an animal is extracted → estimated 
distance to the animal 



4. Example datasets 

 
 

Brandenburg Bavaria 

Wetland biosphere 
reserve Schorfheide-
Chorin 

Low mountain range 
Bavarian Forest 
National Park 

June –August 2019 June – August 2018 

60 s-videos (motion-
triggered) 

Photos (motion-triggered) 

2 s snapshot interval Snapshot interval 
depends on delays 
between photos 

Distances estimates for 
all observed animals  

Distance estimates for a 
subset of observed 
animals 



5. Automatic detection 

 
 



5. Automatic detection 
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5. Automatic detection 
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5. Automatic detection 
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5. Automatic detection 
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6. Comparison of the distance estimates 

 
 



6. Comparison of the distance estimates 
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6. Comparison of the distance estimates 
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6. Comparison of the distance estimates 

 
 

Bavaria 



7. Comparison of the detection probabilities 

 
 



8. Comparison of the population density estimates 

Brandenburg Bavaria 



9. Conclusions 

 
 

• Semi-automatic distance estimates can reduce the time and effort that are needed for 
the population density estimation of unmarked species 
 

• The number of false negatives is generally not related to the distance from the camera 
trap  
 

• The agreement of manual and semi-automatic distance estimates is best at ca. 4 m 
 
 

• Population density estimates are often robust, but problematic cases require further 
attention 
 
 



 
 

Thank you for your attention 


